8=-16t^2+140

Simple and best practice solution for 8=-16t^2+140 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8=-16t^2+140 equation:



8=-16t^2+140
We move all terms to the left:
8-(-16t^2+140)=0
We get rid of parentheses
16t^2-140+8=0
We add all the numbers together, and all the variables
16t^2-132=0
a = 16; b = 0; c = -132;
Δ = b2-4ac
Δ = 02-4·16·(-132)
Δ = 8448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8448}=\sqrt{256*33}=\sqrt{256}*\sqrt{33}=16\sqrt{33}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{33}}{2*16}=\frac{0-16\sqrt{33}}{32} =-\frac{16\sqrt{33}}{32} =-\frac{\sqrt{33}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{33}}{2*16}=\frac{0+16\sqrt{33}}{32} =\frac{16\sqrt{33}}{32} =\frac{\sqrt{33}}{2} $

See similar equations:

| 50+(c–80)=120 | | 4y+12×=20 | | 2^4n×2^2n=512 | | 4(3^x+1)=108 | | 7x+14=7)1x+2 | | x+6=x3 | | 0=0.00003x+0.0968 | | 0=3E-05x+0.0968 | | 6/x+6=x+5 | | x+x+3=12 | | –2x+15=5+3x | | 20x+19=39 | | 20x+10=39 | | 20x+19=41 | | 20x+19=40 | | 7x-9=-2x+18 | | x²+7-40x=0 | | 2x²+176.75-40x=0 | | 2x²+176.75-40x=20 | | 16w+2w+9w-18w=9 | | 7/10x=7/100 | | 3.5=r/1.7 | | (8x+2)+(10x-19)+(16x-7)=180 | | 2.1x=3.36 | | 18h-6h=12 | | 10y-5y-3y+y=9 | | 16=j/15 | | 2y-2y+2y=8 | | 6y+3y+4y+y-4y=10 | | z+3z-3z+3z=20z= | | 0=x^2+17+72 | | z+3z−3z+3z=20 |

Equations solver categories